Further Maths Revision Paper 3

This paper consists of 5 questions covering CP1, CP2, FP1 and FM1. (AS Further Maths: Q1 and 3)

1

Use the t-formula to solve

$$3\sin\theta - 2\cos\theta = 1$$

in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$

$$\sin\theta = 2t$$

$$1+t^2$$

$$\sin\theta = \frac{2t}{1+t^2} \qquad \cos\theta = \frac{1-t^2}{1+t^2}$$

$$\frac{6t}{1+t^2} - \frac{2-2t^2}{1+t^2} = 1$$

$$6t - 2 + 2t^2 = 1 + t^2$$

$$t^2 + 6t - 3 = 0$$

$$\tan \frac{1}{2}\theta = -2\sqrt{3} - 3$$

Two identical elastic strings of length 1m and modulus of elasticity 4.9N are each attached to a particle of mass 0.5kg.

Their other two ends are fixed to two points 4m apart in a vertical line.

(a) Find the height of the particle above the lower fixed point A in the equilibrium position.

The particle is now pulled down to A and released from rest.

(b) Find the greatest height above A to which the particle rises

4
$$\frac{1}{4h}$$

4 $\frac{1}{4h}$
 $\frac{1}{4h}$

- (a) Verify that the complex number $\alpha = e^{\frac{2\pi i}{5}}$ is a root of the equation $z^5 1 = 0$.
- (b) Show that $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 = 0$
- (c) Find a quadratic equation whose roots are $\alpha + \alpha^4$ and $\alpha^2 + \alpha^3$
- (d) Hence, or otherwise, show that

$$\cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$

a)
$$(e^{\frac{2\pi i \sqrt{5}}{5}} - 1)$$

$$= e^{\frac{2\pi i \sqrt{5}}{1 - 1}}$$

$$= 1 - 1$$

$$= 0$$

$$1 + e^{\frac{2\pi i}{5}} + e^{\frac{4\pi i}{5}} + e^{\frac{\pi i}{5}} + e^{\frac{8\pi i}{5}}$$

$$= \frac{1(1 - (e^{2\pi i \frac{1}{5}})^5}{1 - e^{2\pi i \frac{1}{5}}} = 0$$

Sum of roots = -1

Product of roots
$$(x+x^{2})(x^{2}+x^{3})$$

$$= x^{3}+x^{6}+x^{4}+x^{7}$$

$$= x^{3}+x^{4}+x^{6}+x^{7}$$

$$= x^{3}(1+x+x^{3}+x^{4})$$

$$= x^{3}(-x^{2})$$

$$= -x^{5}$$

$$= -1$$

$$= -1$$

$$= -1$$

d)
$$z^{2}+z-1=0$$

$$z = -\frac{1 \pm \sqrt{1-4(1)(-1)}}{2}$$

$$z = -\frac{1 \pm \sqrt{5}}{2}$$

$$\cos 2\pi + \cos (-2\pi) = -\frac{1+\sqrt{5}}{2}$$

$$\cos 2\pi + \cos (-2\pi) = -\frac{1+\sqrt{5}}{2}$$

- (a) The roots of the equation $x^3 + px^2 + qx 30 = 0$ are in the ratio 2:3:5 Find p and q.
- (b) If the roots of the equation

$$4x^3 + 7x^2 - 5x - 1 = 0$$

are α, β, γ find the equation whose roots are $\alpha\beta, \beta\gamma, \gamma\alpha$

q)
$$\alpha: \beta: \delta = 2:3:5$$

$$x + \beta + \delta = 10$$

$$x + \beta + \delta = 6 + 15 + 10$$

$$= 31$$

$$x^{3} - 10x^{2} + 31x - 30$$

$$\Rightarrow 0$$

$$\sum_{\alpha} \alpha = -\frac{7}{4}$$

$$= -\frac{7$$

Find the equations of the tangents to the hyperbola $3x^2 - 4y^2 = 1$ which make equal angles with the axes.

$$3x^{2} - 4y^{2} = 1$$

$$x = \frac{1}{\sqrt{3}} \frac{3}{3} x + y^{2} = 1$$

$$x = \frac{1}{\sqrt{3}} \frac{3}{3} x + y^{2} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} x + x + x + y^{2} = 1$$

$$x = \frac{1}{\sqrt{3}} \frac{3}{3} x + x + y^{2} = \frac{1}{\sqrt{2}} x + x + y^{2} = 1$$

$$x = \frac{1}{\sqrt{3}} \frac{3}{3} x + x + y^{2} = \frac{1}{\sqrt{3}} x + y^{2} =$$

$$y - \sqrt{3} = x - 2 / \sqrt{3}$$

$$y = x - \sqrt{3} / 6$$

$$y = x + \sqrt{3} / 6$$

$$y = -x + \sqrt{3} / 6$$

$$y = -x + \sqrt{3} / 6$$